
Workbook
on

C++ Programming
Version 1.0

Author

Richard Conn

University of Cincinnati

Department of Electrical and Computer Engineering

February, 1992



Workbook on C++ Programming

Table of Contents

1. Types and Functions ........................................................................................................................4

1.1. Modeling the World with Types ......................................................................................4

1.2. Types = Structs + Functions ............................................................................................4

1.3. Data Protection................................................................................................................6

1.4. Classes ............................................................................................................................6

1.5. Function Overloading ......................................................................................................7

1.6. Default Function Arguments............................................................................................7

2. More C++ Basics .............................................................................................................................8

2.1. Type-Safe Linkage ..........................................................................................................8

2.2. Constructors and Destructors ...........................................................................................8

2.3. Const ...............................................................................................................................10

2.4. Inline...............................................................................................................................10

2.5. Objects May Be Defined Anywhere.................................................................................11

2.6. References.......................................................................................................................11

2.7. this ..................................................................................................................................13

3. Even More C++ Basics ....................................................................................................................14

3.1. Static Class Members ......................................................................................................14

3.2. Dynamic Object Creation ................................................................................................15

3.3. Container Classes ............................................................................................................16

4. Classes and Inheritance ....................................................................................................................17

4.1. Designing Header Files....................................................................................................17

4.2. Inheritance ......................................................................................................................18

4.3. More Inheritance .............................................................................................................19

4.4. Base Class Constructors...................................................................................................20

4.5. Base Class Destructors ....................................................................................................21

5. Families of Types and More Features of C++...................................................................................23

5.1. Composition ....................................................................................................................23

5.2. Creating Families of Types..............................................................................................24

5.3. Virtual Functions.............................................................................................................24

5.4. Operator Overloading ......................................................................................................25

6. Closing ............................................................................................................................................26

Page 2



Workbook on C++ Programming

Solutions..............................................................................................................................................27

Solution 1.1............................................................................................................................27

Solution 1.2............................................................................................................................28

Solution 1.3............................................................................................................................29

Solution 1.4............................................................................................................................30

Solution 1.5............................................................................................................................31

Solution 1.6............................................................................................................................32

Solution 2.1............................................................................................................................33

Solution 2.2............................................................................................................................36

Solution 2.3............................................................................................................................37

Solution 2.4............................................................................................................................38

Solution 2.5............................................................................................................................39

Solution 2.6............................................................................................................................40

Solution 2.7............................................................................................................................41

Solution 3.1............................................................................................................................42

Solution 3.2............................................................................................................................43

Solution 3.3............................................................................................................................45

Solution 4.1............................................................................................................................47

Solution 4.2............................................................................................................................49

Solution 4.3............................................................................................................................50

Solution 4.4............................................................................................................................52

Solution 4.5............................................................................................................................54

Solution 5.1............................................................................................................................56

Solution 5.2............................................................................................................................58

Solution 5.3............................................................................................................................60

Solution 5.4............................................................................................................................62

Page 3



Workbook on C++ Programming

The purpose of this workbook is to teach you about C++ in an overview fashion.  This workbook follows

the video course entitled The World of C++ by Borland.

1. Types and Functions

1.1. Modeling the World with Types
Object-oriented programming includes the following basic concepts:

✓ We organize our world using types.  We use the concept of type to organize our world in a

meaningful way.  Virtually every object in our world is classified as some "kind of" or "type of"

object.

✓ A type has characteristics and behaviors.  Characteristics are represented by data (and the state

of that data) and behaviors are represented by functions.

✓ Object-oriented programming (sometimes abbreviated as OOP) allows real-world types to be

represented as abstract data types in the computer.  Our computer programs become models of the

real world, where the real world is realized as a number of interacting objects and so is our program.

✓ Inheritance establishes a relationship between types.  It shows which characteristics and

behaviors are common and which are different.  It also lets you reuse an existing type by adding code

on top of the existing code, rather than modifying (or even accessing) the original source code.

✓ A type hierarchy establishes a common interface in the base type, and different implementations

in the derived types.  This is called polymorphism.  Polymorphism allows you to create clear

programs which can be easily and inexpensively extended.

✓ Dynamic object creation lets you decide the quantity, type, and lifetime of variables at run-time

rather than when you are writing the program.

Problem 1.1: Draw a hierarchy diagram to represent types of electronic equipment.  Put electronic

equipment at the root of the hierarchy, with business and entertainment branching from it.  Business

includes such things as cash registers, copiers, and so on; entertainment includes such things as

television, video games, and music systems.  How do you classify things that could belong to both

groups, like telephones and computers?

1.2. Types = Structs + Functions
C++ allows you to create new types by using structs and functions.  Some notes:

✓ C++ has a comment syntax of its own, in addition to the regular C-style comment syntax.  The

new comment specifier, //, starts a comment that continues to the end of the line.

✓ A type is a struct with functions.  In C++, the concept of a struct is extended so it can contain

functions as well as data.  An example from the video:

Page 4



Workbook on C++ Programming

struct elevator {
  int floor_selected;
  int floor_number;
  void initialize();  // function declaration in the scope
                      // of the struct
  void select_floor (int floor);
  void go();
};

✓ When member functions are defined outside the body of the struct, their associated struct is

specified using the scope resolution operator.  This is a double colon (::) placed between the type

name and the member function name, like this:

void typename::member_name() { /* function body */ };

In the elevator structure, the initialize function would look like:

void elevator::initialize() {
  floor_selected = 0;
  floor_number = 0;
}

You use the scope resolution operator any time when the compiler would not normally choose the

desired name.  For example, if you have a global variable X that is hidden by a local variable X, you

can access the global variable using ::X.  For example,

int my_var;      // global variable
void main (void) {
  int my_var;    // local variable
  my_var = 1;    // this sets the local variable above
  ::my_var = 2;  // this sets the global variable
}

✓ A member function can access any other member in the same struct, including both data and

function members.  In the initialize() function, it accessed the floor_selected and floor_number

variables.

✓ The C++ compiler automatically generates the equivalent of a typedef for a struct name.  The

name becomes the equivalent of a new keyword.  For example, in the elevator example:

struct elevator my_elevator;  // create an elevator object
elevator his_elevator;  // "struct" not needed

✓ Given the creation of an object via a struct, you invoke a member function by following the

object name with a dot and the name of the function.  For example, to invoke the initialize() function

on the two elevator objects above:

my_elevator.initialize();
his_elevator.initialize();

✓ You can use existing C code in your programs.  All the ANSI C and Borland C libraries are

automatically available.

Page 5



Workbook on C++ Programming

Problem 1.2: Write a C++ program which creates a complex object struct.  The struct should contain the

member data real_part and imag_part as type double.  The struct should also contain the member

functions set(), add_one_to(), and print() which sets the value of a complex number, adds 1 to a complex

number, and prints a complex number.  Define the required member functions by placing their code in

the body of the struct (you don't have to use the scope resolution operator).  In your mainline, create a

complex number, set it to 20i - 30j, print it, add one to it, and print it again.

1.3. Data Protection
Protection of data from accidental modification enforces the proper use of a data type and easily isolates

errors.  Access is controlled with the three access specifiers:

✓ private:, which prevents access from the outside world -- only member functions (and friend

functions) may change private data or access private member functions

✓ protected:, which is like private except inherited classes also have access (inheritance is

covered later)

✓ public:, which permits everyone to access the members

For example,

struct protection_example {
  int public_can_change_this;  // public by default
private:
  float public_can_not_change_this;
protected:
  float public_can_not_change_this_also;  // unless you
                                          // inherit
};

Special access to private and protected members could be granted to non-member functions -- either

ordinary functions, member functions of structs, or entire structs -- by using the friend keyword when

declaring the function inside a struct.

Problem 1.3: Write a C++ program which creates a struct named P containing an integer.  Define two

member functions: set() which sets the value of this integer and print() which prints its value.  Also

define a friend function called printit().  In your mainline, create an object of type P and set its value to

12.  Print it using the member function.  Change its value to 14.  Print it using the friend function.  To get

you started, the declaration of struct P should look like this:

struct P {
private:
  int value;
public:
  void set (int);
  void print (void);
  friend void printit (P);
};

1.4. Classes
The C++ keyword class is like struct in functionality except that class defaults to private members while

struct defaults to public members.  class is the preferred keyword for defining new types, particularly

since it adds extended functionality over struct (which we will discuss later).

Page 6



Workbook on C++ Programming

The video showed that class, struct, union, and enum are treated similarly by the compiler in that their

tag names create reserved words within their scope (similar to doing a typedef in C), and the forms of the

declarations and definitions are very similar.

Problem 1.4: Write a C++ program which creates a class called counter.  Keep the integer which keeps

the count for the counter private.  Provide public member functions which set, increment, and display the

count.  Create two counter objects, set them to different values, display them, increment them, and

display them again.

1.5. Function Overloading
Function overloading allows you to create more than one function with the same name as long as all the

functions have distinct argument lists.  Function overloading has many advantages, such as preventing

name clashes when you are using multiple libraries.

Some examples of overloaded functions are:

void f(int);
void f(int, char);
float f(double);

Overloading is resolved by the argument lists only.  The following pair of declarations is invalid and not

an example of proper overloading since only the types returned differ:

void f(int);
double f(int);

Problem 1.5: Write a C++ program which contains two functions called print().  One function prints an

int and the other a double.  Output an int and a double using these functions from the mainline.

1.6. Default Function Arguments
Default arguments are used with a function when you want some of the arguments to be automatically

inserted by the compiler instead of writing them all out yourself every time you call the function.  Here is

an example of a function with default arguments and several calls to it:

void g(float f, float f2 = 1.1, char x = 'i');

g(12.2);  // f=12.2, f2=1.1, x='i'
g(20.0, 4.0);  // f=20.0, f2=4.0, x='i'
g(100.0, 200.0, 'a');  // f=100.0, f2=200.0, x='a'

You can declare a function more than once, but you may only give default arguments once.  Only trailing

arguments may be given default values, and once you start giving default values, all the rest of the

arguments in the list must have defaults.

Problem 1.6: Write a C++ program which contains a function called print() with a default argument of 1.

Call print with no arguments and with an argument of 20.  As a function, print() is to display the value of

its argument to the console.

Page 7



Workbook on C++ Programming

2. More C++ Basics

2.1. Type-Safe Linkage
In C, you can call functions without declaring them, which means that the C compiler may make

incorrect assumptions about that function, such as the type of its return value or the number and types of

its parameters.  C++ includes several innovations to help reduce errors:

✓ C++ requires full function prototyping.  C++ forces you to declare all functions and to use full

prototypes in those declarations.  Even if you declare functions in C, you may declare them

incorrectly without generating any error messages.  C++ checks every function call during

compilation to determine if the number and types of the arguments to the function and the type

returned from the function match its prototype.

✓ C++ has type-safe linkage.  In C++, type-safe linkage occurs because all function names are

mangled in the object files.  This mangling of function names embeds information about the

arguments into the function names.

✓ C++ supports an alternate linkage specification to provide compatibility with C libraries.

In some situations, such as linking to libraries created with an ANSI C compiler, you may not want

C++ to mangle function names.  C++ lets you tell it not to mangle a function name through the use

of an alternate linkage specification, which looks like this:

extern "C" { float round(float); }

Problem 2.1: Create two C++ files, one with a function definition (code) and one that declares (contains a

function prototype) and uses the function.  In the second file (the one with the prototype), make the

declaration incorrect by putting the wrong argument type in the prototype.  Compile and link the files,

noting that the linker catches the error since the files are compiled separately.  Create a third file which

declares and uses the function, but this time make the declaration incorrect by putting the wrong return

type in the prototype.  Compile and link the files.  Note that the error is not caught -- why do you think

the return types are not encoded in function names?

2.2. Constructors and Destructors
When you define a class in C++, a special kind of member function which is automatically called

whenever an instance of the class (e.g., an object) is created.  This member function is called a

constructor, and it is designated by having the same name as the class itself.  Here is an example of a

class with a constructor:

class complex {
  float real_part;
  float imag_part;
public:
  complex();  // object is initialized to zero
  void set (float rp, float ip);
  void print(void);
};

As mentioned above, constructor calls occur automatically at the point the variable is defined.  The user

cannot access the variable before the constructor has been called.  Although constructors are optional,

you will often want to use one.  The following shows an example of the declaration of a complex object:

Page 8



Workbook on C++ Programming

complex value;  // space is allocated and value is set to
                // 0,0

You can create as many overloaded constructors as you want to perform as many different kinds of

initialization as you want.  For example, extending the definition of the complex class above:

class complex {
  float real_part;
  float imag_part;
public:
  complex();  // object is initialized to zero
  complex(float rp);  // init only real part, imag is 0
  complex(float rp, float ip);  // init both parts
  void set (float rp, float ip);
  void print(void);
};

With this class definition, there are three ways to create complex objects:

complex val1;            // val1 = 0.0i + 0.0j
complex val2(2.0);       // val2 = 2.0i + 0.0j
complex val3(4.4, 5.5);  // val3 = 4.4i + 5.5j

You can also use default arguments with constructors, so long as you don't generate ambiguities.  The

requirement to not generate ambiguities is true for all functions that use overloading and default

arguments.  Changing the complex class again:

class complex {
  float real_part;
  float imag_part;
public:
  complex(float rp = 0.0, float ip = 0.0);  // init 3 ways
  void set (float rp, float ip);
  void print(void);
};

This single constructor function supports all three types of object declaration (shown with the

declarations of val1, val2, and val3 above).

C++ allows you to ensure proper cleanup with destructor functions.  A destructor is a member function

with the same name as the class preceded by a tilde (such as ~complex).  Here is our complex class with

a destructor:

class complex {
  float real_part;
  float imag_part;
public:
  complex(float rp = 0.0, float ip = 0.0);  // init 3 ways
  ~complex();  // destructor
  void set (float rp, float ip);
  void print(void);
};

Page 9



Workbook on C++ Programming

Destructor calls are also invoked automatically, and they occur when a variable goes out of scope.

Destructors are optional, but you often need one.  You can only create one destructor function for each

class, and it cannot have any arguments.

Problem 2.2: Write a C++ program which contains a class that has only a constructor and a destructor as

its member functions.  Determine the order of constructor and destructor calls for variables by putting

printf() statements inside the constructor and destructor and creating several variables inside main().  To

generate a unique identifier for each variable, use the keyword this inside the printf() statement.  this is

the address of the current variable, and this is a pointer.  You can print pointers inside printf() by using

%p as a format specifier.

2.3. Const
You can use const in front of any variable definition to indicate that the value cannot be changed and that

the C++ compiler should try not to allocate storage for it, keeping the information about it in the symbol

table only.  Examples of constants in C++ are:

const a = 1;  // int is assumed
const float pi = 3.14159;
const char exit_command = 'x';

If you are familiar with ANSI C, the behavior of const in C++ is distinctly different from the behavior of

const in ANSI C.  In ANSI C, const defaults to external linkage (it is global), and const always allocates

storage for the value, so you cannot use it in constant expressions like array definitions.  In C++, const

defaults to internal linkage (as if you had said static const).  Also, the C++ compiler stores the value of

consts in the symbol table, so they can be used in constant expressions.  Most C++ compilers, however,

must allocate storage for user-defined types, so you should only expect to be able to use built-in types in

constant expressions.

Because of these differences, you cannot use const in a header file or to otherwise replace the use of

#define in ANSI C, while in C++, use in header files and replacing the use of #define is exactly what

const is for.

Problem 2.3: Write a C++ program which creates an array of integers, where the size of the array is

dictated by a const variable.  Print out the size of the array (using the sizeof operator) and the value of

the const variable.

2.4. Inline
In C++, the preprocessor is seen as a trouble spot not only because it can create expressions with unusual

behavior and side effects, but also because it has no concept of type.  Type is a fundamental idea in C++,

and type checking is a very important way to discover programmer errors during compile time.  The

preprocessor's ignorance about types means that it can hide errors, making them difficult to find.

C++ provides an improvement to preprocessor macros with the inline keyword.  Inline functions behave

exactly like conventional functions, but they do not generate code until the point at which they are called,

at which time the code is placed in with the code which calls the function rather than placing a subroutine

call in the calling code.  Functions that are defined within a class declaration are automatically inline,

but global functions must use the inline keyword.

The function prototype and function body of an inline function are stored in the C++ compiler's symbol

table.  When you call an inline function, the C++ compiler checks to see that the arguments and return

values are correct, and then it substitutes the function body directly into the code.

Page 10



Workbook on C++ Programming

Problem 2.4: Write a C++ program which contains an inline function that takes a single integer

argument, adds 5 to it, and prints the result using printf().  Have the mainline call this inline function 10

times with different arguments.  What do you think the object code looks like at each one of these calls?

2.5. Objects May Be Defined Anywhere
In a C++ program, unlike a C program, objects may be defined anywhere.  There are cases where some

variables cannot be initialized until some code has executed, so C++ allows you to define variables at any

point in a scope.  These variables exist after their definition to the end of the scope.  For example:

complex a;  // create complex number a
a.print();  // print it
complex b;  // create complex number b
b.print();  // print it

C++ supports a very sophisticated mechanism for the initialization of aggregates.  This means that you

can ensure that aggregates are initialized at their point of definition, allowing you to avoid the tedious

and error-prone code that may otherwise be required to initialize the aggregate manually.

Variables of built-in types are also regions of storage, so we sometimes call them objects.  Conversely,

we sometimes call class objects by the word variables.  Even function definitions require storage, but

these are rarely called objects except where the linker is concerned.  In a pure object-oriented language

like Smalltalk, everything is an object, so this distinction is not required.  C++ is called a hybrid language

since it is a hybrid of C and other languages, most notably Simula-67.

Some notes about C++ and its use of storage for objects:

✓ Storage is reserved at the beginning of a scope.  Like C, the C++ compiler allocates storage on

the stack when a scope is entered.  To do this, the C++ compiler must scan forward and determine all

the variables which are defined in that scope.

✓ Initialization of objects occurs at the point of definition.  Although the space is reserved upon

entering the scope, initialization does not occur until the point at which the object is defined.

✓ An object is unavailable until it is defined.  The object is not available until after the point of

definition.  In a class with a constructor and destructor, if you leave a scope before the constructor is

called, then the destructor is not called.  The compiler will not allow a goto that skips object

initialization.

Problem 2.5: To prove that C does not let you create variables anywhere in a scope and that C++ does,

create a small C program that has variable definitions after a puts() statement.  Compile it first with C++

and then with C.

2.6. References
C++ has the traditional pointer facility of C, and pointers act just the way you would expect, even when

calling member functions.  C++ also has a new feature called a reference, which is like a pointer except

the compiler automatically takes the address and dereferences it for you.  A reference looks just like an

object except at the point of creation.  References are almost exclusively used as function arguments and

return values.  For example:

Page 11



Workbook on C++ Programming

// Exchange function in C++
void exchange (int &left, int &right)
{
  int temp;
  temp = left;
  left = right;
  right = temp;
}

// Code which calls this exchange () function
int a = 5, b = 4;
exchange (a, b);  // pointers to a and b are passed

The above example is equivalent to its C counterpart:

/* Exchange function in C */
void exchange (int *left, int *right)
{
  int temp;
  temp = *left;
  *left = *right;
  *right = temp;
}

/* Code which calls this exchange () function */
int a = 5, b = 4;
exchange (&a, &b);  /* pointers must be created by user */

Problem 2.6: Write a C++ program which creates two objects which are of the type of this book struct:

struct book {
  char title[40];
  char author[20];
};

Initialize these objects in an aggregate using dummy data of your choice.  Include in the program a

function which receives a book object by reference and prints out the values of the fields.  Call this

function twice, one time with each of the books you created.

Page 12



Workbook on C++ Programming

2.7. this
The keyword this is really important in C++.  It provides an object which is created as an instance of a

class with a mechanism to determine its own address.  this is a hidden pointer which is created with each

instance of a class, generating a little additional overhead in the process.

Problem 2.7: Write a C++ program which contains a class based on the following class declaration:

class person {
  char *name;
public:
  person (char *my_name);  // create a person with a given
                           // name
  void print_me(void);  // print the name of a person and
                        // his address using this
};

Implement this class.  Create five instances of this class with different names.  Have each object invoke

its print_me() member function.

Page 13



Workbook on C++ Programming

3. Even More C++ Basics

3.1. Static Class Members
The class members, both functions and data, discussed so far work with each instance of the class.  Each

time a new object is created, a new copy of the member data is produced.

A special kind of class member, declared with the keyword static, is a class member which works with

the class as a whole, not with the individual members of a class.  A static member data element, for

instance, is created only once for the entire class, regardless of how many instances of that class are

created.  Static class members can be accessed by all members of a class, and the name of a static

member data element is hidden within the scope of the class.  Here is an example of a class with a static

member data and a static member function:

class demo_static {
  static int i;  // only one of these is created
  int j;         // one is created local to each object
public:
  static void f();
};

demo_static x, y, z;  // one int i is created and 3 int j's

Defining and initializing static member data is performed by a global definition that reserves storage and

initializes the data.  The int i static member data element above is initialized as follows:

int demo_static::i = 0;

The member function f() can access the int i like any other member data element.

Static member functions also work with the entire class rather than a particular object.  The address of the

object, referred to with the keyword this, is not secretly passed into a static member function.  Thus, a

static member function can only access static data members or call other static member functions unless

it gains access to the public members of an object by having the object passed as an argument to it.

A static member function is called either with an object or by specifying the class name and the scope

resolution operator.  Two ways to call the static member function f() in the example above are:

object.f();        // access f() through an object
demo_static::f();  // access f() without an object

Problem 3.1: Write a C++ program which defines the following class:

class counter {
  static int object_count;
public:
  counter();
  static int get_count(void);
};

Each time an object is created, the constructor is to increment the object_count.  get_count() returns the

current value of the object_count.  Your program is to create 5 instances of this class, printing out the

current value of object_count each time a new object is created.

Page 14



Workbook on C++ Programming

3.2. Dynamic Object Creation
All the examples shown so far have used static or automatic objects with their memory allocated by the

C++ compiler at compile-time.  To write a program which uses only static or automatic objects, you must

know the quantity, type, and lifetime of all the objects you will ever need in advance.  This is a severe

limitation when solving more general types of problems when the number and details of the objects in the

system are not known until run-time.

Dynamic object creation in C++ lets you choose, at run-time, the type and the lifetime of an object.  You

can also decide at run-time how many objects you will need.  Arrays of objects can even be created and

destroyed as needed.

In conventional C, the C standard library functions malloc() and free() were always used to dynamically

create objects and then later destroy them.  These C standard library functions are also available in C++

if you wish to use them, but C++ has two new operators which eliminate the need for malloc() and free()

while adding automatic invocation of constructors and destructors.  The C++ operator new allocates

memory and calls the constructor associated with the object to guarantee that the object is properly

initialized.  The C++ operator delete calls the destructor associated with the object and then releases the

memory associated with the object.  These operators let you create objects at run-time as easily and

safely as you do at compile-time.

This example uses new and delete to create and destroy an instance of the class string:

string *s = new string ("hello");
delete s;

Problem 3.2: Write a C++ program which defines a string class declared as follows:

const max_string_length = 100;
class string {
  char data[max_string_length];
  static int number_of_strings;
public:
  string(char *);  // place arg string into buffer and
                   // increment number_of_strings
  static int count(void);  // return number_of_strings
  void print(void);        // print current string
};

Create 3 string objects, initializing them to different values.  Print out the count of the strings.  Create 2

more string objects, also initializing them to different values.  Print out the count of the strings.  Have

each string object print out its value.

Page 15



Workbook on C++ Programming

3.3. Container Classes
Container classes, which are sometimes called collections, are classes whose member data elements

include instances of other classes.  For example, a car class may contain member data elements which are

wheels, where a wheel is defined as a class in its own right.

Problem 3.3: Write a C++ program which defines two classes declared as follows:

class note {
  char text[40];
public:
  note (char * = " ");  // create a note
  void print (void);  // print the note
};

class note_book {
  note *narray[10];
  int number_of_notes;
public:
  note_book();  // init number_of_notes
  void add (note *);  // add a note to the note_book
  void print(void);  // print out the note_book
};

Have your program create 7 note objects (containing different values) and add them to the note_book.

Print out the note_book.

Page 16



Workbook on C++ Programming

4. Classes and Inheritance

4.1. Designing Header Files
In C++, it is often important to organize your code effectively for large projects, libraries, and situations

where you are using classes and separate compilation.  Correctly organized code greatly facilitates reuse.

The organization of the code is most apparent in its header files.

A header file includes the class declarations (but not the definitions unless you absolutely have to),

function prototypes, const values, and anything else that is a part of the public interface to a class or

library.  Again, header files contain only declarations, not definitions.  If an entity is realized as code or

data which occupies space in the memory of the running process, it does not belong in the header file.

An example of a C++ header file follows:

// Header file for a stack class

// This preface ensures that the header file will never
// be included twice
#ifndef STACK_H_
#define STACK_H_

const stack_size = 100;

class stack {
  int stack[stack_size];
  int top_of_stack;  // index of the next available element
                     // in the stack array
public:
  stack();          // init top_of_stack to zero
  void push (int);  // place an element on the stack
  int pop (void);   // extract an element from the stack
  int is_full (void);   // return 1 if stack is full,
                        //0 otherwise
  int is_empty (void);  // return 1 if stack is empty,
                        //0 otherwise
};

#endif // STACK_H_

The declarations for classes and functions that belong together should be placed in a single location: the

header file.  Use this header where ever the classes and functions are defined or used to ensure

consistency and reduce bugs.

Since C++ does not allow you to re-declare classes, you must insulate header files so the C++ compiler

sees their contents only once when compiling a file.  The situation often comes up where one header file

needs another, so it #includes it.  If you already have a #include directive for this second header file,

C++ would see the same header file twice, confusing matters greatly.  The example above shows how a

header file may be insulated to eliminate this problem.  The general rule is to include the following

sequence of preprocessor statements around the body of the header file:

#ifndef FILE_H_
#define FILE_H_
// code for the body
#endif  // FILE_H_

Any defined symbol may be used, but it is common to use a form like FILE_H_ so that it is clear that a

header file is involved.  In effect, this practice says "if this header file has been included before

Page 17



Workbook on C++ Programming

(FILE_H_ has already been defined), then ignore the rest of this file."  Key to making this work is

coming up with an identifier whose name is unique that can be used by the preprocessor so it can

determine if the header file was included before.  It is easiest to use a modification of the header file

name (the header file was named in this case, so the preprocessor symbol FILE_H_ was chosen).

Problem 4.1: Write a header file for a C++ class of complex numbers.  Include as many pertinent

operations you can think of.  Look at the solution in the back, and you may be surprised because the idea

of operator overloading is introduced here.  We will discuss operator overloading later in this workbook.

4.2. Inheritance
Inheritance in C++ lets you easily create new classes from existing ones.  This feature of the language

has several benefits:

✓ New classes can be created quickly without introducing bugs to code which was previously

debugged.

✓ Code can be reused and augmented without having to rewrite it.

✓ When you extend or modify a system, you don't end up with a lot of copies of similar code to

maintain.

✓ You don't need access to the source code of the member function definitions, so you can use

another library even if it's just a header file and compiled code.  This goes a long way to creating a

software business area of designing and selling reusable components libraries in C++.

✓ The design of programs is easier because you can further partition a program into logical pieces.

✓ This technique helps to isolate bugs.

The syntax for inheritance is simple.  In the class declaration, place a colon after the class name.  Put the

name of the class you are inheriting after the colon which follows the name of the class you are declaring.

The name of the class you are inheriting is now followed by the opening brace of the body of the class

declaration.  Inheriting a class called base looks like this:

class derived : base {
  // declaration of class derived goes here
};

Problem 4.2: Write a C++ program which contains the following class definition for a number class and

the definition of a derived class called pnumber which inherits the number class definition:

class number {
protected:
  int value;
public:
  number(int new_value = 0);
  void set (int new_value = 0);  // change existing number
};

Implement the number class definition by filling in the member functions.  Create the derived pnumber

class declaration, adding a new member function called print() which displays the value of the pnumber

object.  Note that this problem introduces the concept of a protected class member, where a protected

class member is private from the point of view of the outside world but public from the point of view of

Page 18



Workbook on C++ Programming

a derived class.  Complete your program by creating three pnumber objects, setting them to different

values upon creation.  Print these values, then change them and print them again.

4.3. More Inheritance
The following header file contains the declaration for a class whose mission is to remember its creation

date and time:

// TSTAMP.H: type of signal which remembers its creation
// time
#ifndef TSTAMP_H_
#define TSTAMP_H_

// Provide access to time(), ctime(), and printf()
#include <time.h>
#include <stdio.h>

class time_stamp {
  time_t stamp
public:
  time_stamp();         // set time stamp
  void showtime(void);  // display time stamp
};

#endif  // TSTAMP.H

This header file may be implemented with the following code definition:

// TSTAMP.CPP: implementation of TSTAMP
#include "tstamp.h"

time_stamp::time_stamp() {
  time (&stamp);  // get time from system
}

void time_stamp::showtime(void) {
  printf("Time Stamp: %s\n", ctime (&stamp));
}

Note that for any class derived from time_stamp, if you want to add functions or data to time_stamp or

modify the existing member functions, these changes are immediately propagated through to all the

derived classes.  This means that maintaining code becomes much easier because it isn't duplicated when

you make changes -- there's a single definition for a function.

Just like members of a class may be public, private, or (a hybrid) protected, base classes may be public

or private (they default to public).  A private base class is one in which all its members are hidden

within the derived class -- its members are private to the derived class.  A public base class is one in

which all of its public members are also public to the derived class -- its public members are available to

users of the derived class.  For example,

class message : private time_stamp {
  char *msg;
public:
  message(char *);  // init the msg ptr
  void print(void); // print the message with date and time
};

Page 19



Workbook on C++ Programming

In the case of class message, the only member functions available to the outside world are the constructor

and print().  However, the situation is different for this case:

class message2 : public time_stamp {  // keyword public
                                      // may be omitted
  char *msg;
public:
  message(char *);  // init the msg ptr
  void print(void); // print the message with date and time
};

In the case of class message2, the member functions available to the outside world are the constructor,

print(), and showtime(), where showtime() is in the base class time_stamp.

You have just observed one disadvantage to inheritance in C++:

In order to determine all of the member functions available to a derived class, the

user must examine each of the base classes.  If the base classes are themselves

derived, the user must also examine each of the sub-base classes associated with the

base classes.

Breaking your problem into classes has the effect of partitioning the problem.  This establishes principal

dividing lines that are enforced by the C++ compiler, thereby establishing an organization that prevents

the kind of entropy that causes spaghetti code.  Inheritance partitions your solution even further, so you

can try out new ideas without damaging code that works.  If a bug appears, it is immediately isolated to

the additional code you added during the inheritance process.

Problem 4.3: Write a C++ program which implements time_stamp, message, and message2.  You may

place all the code in one file to simplify the problem.  Create an instance of message and an instance of

message2.  Exercise all the member functions of each object.

4.4. Base Class Constructors
Inheritance as described so far is a wonderful idea, but one thing is missing -- the invocation of the

constructors of the base classes, particularly when these constructors require arguments.  The

constructors of the base classes are explicitly called (this is the only time you may explicitly call a

constructor in C++) in the constructor initializer list for the derived class.  The constructor initializer list

is placed after the constructor argument list of the derived class's constructor definition and before the

opening brace of the constructor body.  For example:

class base {
public:
  base(char *);  // requires a string
};

class derived : base {
public:
  derived (char *);  // requires a string to be passed to
                     // base
};

The class derived is derived from class base.  The constructor for class derived would look like this:

Page 20



Workbook on C++ Programming

derived::derived(char *data) : base (data) {
  // details of derived constructor
}

So, the constructor initializer list is used to explicitly pass arguments to the base class constructors.  If

the base class constructors do not require arguments, they need not be specified in the constructor

initializer list.

When using inheritance, all the constructors in all the base classes are called, either explicitly using the

constructor initializer list or implicitly by the C++ compiler (using the default constructors).

Constructors are called starting at the base class and working their way up to the derived class.

The way C++ calls base class constructors ensures that all derived class constructors can depend on the

base class being properly initialized.

Problem 4.4: Create a new C++ program from the one you just did on the time_stamp base class.  Create

another derived class called priority_message, which requires a second string that indicates the urgency

of the message (where urgency strings may be something like "routine", "flash", and "dire emergency").

The priority_message class should inherit the message2 class, replacing print() to include the urgency

string.  Add to the constructors of all these classes a printf() call that outputs a note saying that the

constructor was called.  Also add destructors to all these classes which contain printf() calls that output

notes saying that the destructors are called.  Create two priority_message objects and note the order of

the constructor and destructor calls.  Output the priority_message values through print() member

functions declared and defined in the priority_message class.

4.5. Base Class Destructors
Only one destructor may be defined for a class, and destructors (which cannot take any arguments) are

automatically called by the C++ compiler.  The automatic calling of destructors means that you don't

have to specify which destructor to call.  For derived classes, there is no destructor equivalent to the

constructor initializer list.

All destructors are called for an instance of a derived class -- not just the destructor declared in the

derived class itself.  As with constructors, this is done to ensure that all parts of an object are properly

cleaned up.

Destructors are called from the top down, which is the opposite order from which the corresponding

constructors were called.  This way, any activities the destructor performs can be sure that base class

function calls operate properly.

Page 21



Workbook on C++ Programming

Problem 4.5: Write a C++ program which contains a chain of derived classes like the following:

class base {
  char *msg;
public:
  base(char *);   // prints message only
  ~base();        // prints an exit message
  void print(void);  // print msg
};

class derived1 : base {
public:
  derived1(char *);   // prints a different message
  ~derived1();        // prints an exit message
};

class derived2 : derived1 {
public:
  derived2(char *);   // prints a 3rd message
  ~derived2();        // prints an exit message
};

Write implementations for all the member functions.  Also type the following main() function into your

code.  Execute the program and note what happens.

void main(void)
{
  derived2 x("X");  // in scope of main()
  {  // establishing a new scope in scope of main()
    derived2 y("Y");
  }
  derived2 z("Z");  // also in scope of main()
}

When were the destructors for x, y, and z called?  When were the constructors for x, y, and z called?

When was space allocated for the objects x, y, and z?

Page 22



Workbook on C++ Programming

5. Families of Types and More Features of C++

5.1. Composition
While inheritance is great in C++, you don't always want to use inheritance (which is a form of

derivation) when making new classes out of old ones.  Inheritance is sometimes called an is-a

relationship between classes; for example, a car is a type of vehicle.  Another kind of relationship is a

has-a relationship; for example, a car has an engine and four wheels.  Inheritance does not make sense in

describing a has-a relationship, but composition, wherein a class is built that contains instances of other

classes, does make sense.  An example of composition:

class wheel {
  int wheel_diameter;
public:
  wheel(int diameter);  // set wheel diameter
  void print(void);
};

class vehicle {
  int horse_power;
  wheel lfront, rfront, lrear, rrear;
public:
  vehicle (int hp,
           int diameter_of_each_wheel);
  void print(void);
};

wheel::wheel(int diameter) { wheel_diameter = diameter; }

vehicle::vehicle (int hp,
                  int diameter_of_each_wheel) :
  horse_power(hp),  // init like an assignment
  lfront (diameter_of_each_wheel),  // init each object
  rfront (diameter_of_each_wheel),
  lrear (diameter_of_each_wheel),
  rrear (diameter_of_each_wheel)
{
  // nothing else to be done
}

Using composition is just like using built-in types: you create instances of a class inside another class.

The only trick is that if the objects have constructors which take arguments, those objects must be

explicitly initialized in the constructor initializer list.  See the example above and its long constructor

initializer list.

Built-in types can be initialized in the constructor initializer list, and consts must be initialized this way.

Again, see the example above.  Note that wheel_count(number_of_wheels) in the constructor initializer

list is equivalent to wheel_count = number_of_wheels; in some line of code (assuming wheel_count

was not a const).

Problem 5.1: Write a C++ program by typing in the above body of code.  Add print() member functions

to both the wheel and vehicle classes to print out the values of their internal data.  Create a vehicle object

and invoke the member print() function on it.

Page 23



Workbook on C++ Programming

5.2. Creating Families of Types
Inheritance is used to create families of types:

✓ The base class provides the common interface for the family.  The base class is the abstraction

of the characteristics and behaviors that are common to all types in the family.

✓ The derived classes offer implementations which differ from the base class in significant ways.

From the base class, you derive new types to express the differences between all the objects in your

type family.

✓ A feature of C++ called late binding provides the proper manipulation of a common interface.

To use these types effectively, you must be able to send a message to an object and let the object

figure out what function to call at run-time.  Determining a function call at run-time is called late

binding, run-time binding, or dynamic binding.  Determining a function call at compile-time is called

early-binding, compile-time binding, or static binding.

Problem 5.2: Write a C++ program which demonstrates inheritance and late binding by creating a base

class called pet and the derived classes of dog and cat.  Define a speak() member function for each class.

The speak() function for the base pet class outputs "silence".  The speak() function for a dog outputs

"woof" and the speak() function for a cat outputs "meow".  The base class keeps internal data on the type

of pet it represents using an enum and an internal variable of that enum type.  A member function of the

base pet class called type() returns the value of the type of the pet.

Write a talk() function which is not a member of a class.  The talk() function is to accept the address of a

pet as an argument (use references), and cause the correct speak() function to be called by determining

the type() of the pet and invoking the associated speak() function.

Create a dog object, a cat object, and a pet object.  Call the talk() function on each of them.

5.3. Virtual Functions
C++ implements late binding with the virtual keyword, eliminating the need of the somewhat awkward

function selection mechanism illustrated in the solution to the last problem.  Some details of how late

binding works through virtual functions are:

✓ A special pointer, called VPTR (pronounced vee pointer), is secretly added to a class structure

when the class contains virtual functions.  The VPTR is assigned by the constructor to the address of

the VTABLE (pronounced vee table), and the VTABLE contains the addresses of all related virtual

functions.

✓ A virtual function call consists of code that indexes into the VTABLE through the VPTR.  This

way, the function call is resolved at run-time, based on the type of the object.

A virtual function is declared like any other function except that the virtual keyword prefixes the

function declaration.

Page 24



Workbook on C++ Programming

Problem 5.3: Rewrite the C++ program in problem 5.2 to employ virtual functions for speak().  Modify

talk to use these virtual functions.  Make the speak() function for the pet class into a pure virtual

function, which is defined as follows:

virtual void speak() = 0;

Note that instances of classes that contain pure virtual functions cannot be created in C++, which is fine

since it makes no sense to create such an object.  In the real world, there is no generic pet object.

Instead, there are dog and cat objects.

5.4. Operator Overloading
In C++, you can change the meaning of almost any operator when that operator is used with a variable of

a particular type.  Notice that the meaning of the operator does not change everywhere -- just when the

C++ compiler matches the proper use of the operator with the objects to which it applies.  For instance, if

you have two variables of the class point called a and b, the following expressions

a + b;

will only work if the class point has an overloaded operator+() function.  When the C++ compiler sees a

point followed by a + and another point, it will call the function operator+() to operate on the first point

with the second point as an argument.  C++ is context-sensitive in its selection of the appropriate

functions.

Operator overloading is convenient, especially for mathematically-oriented classes where a natural syntax

is desired as the instances of the class are being used.  However, operator overloading can get a bit tricky

until you really understand what is going on.

Problem 5.4: Write a C++ program which contains a class declaration and definition for the following

class:

class complex {
  float real_part;
  float imag_part;
  char *name;
public:
  complex(char *, float rp = 0.0, float ip = 0.0);
  void set (float rp = 0.0, float ip = 0.0;  // change value
  complex &operator = (complex &);  // assign
  complex operator + (complex &);   // add two objects,
                                    // producing a third
  complex operator - (complex &);
  complex operator * (complex &);
  void print(void);  // print a x + yj
};

Write the definition for this class.  In your mainline, create three complex objects (initializing them to

three different values in the process).  Add two of them, assigning the result to the third.  Print them out.

Subtract two of them, assigning the result to the third.  Print them out.

Page 25



Workbook on C++ Programming

6. Closing
We have gone through a lot in the workbook, and it is a good idea to review some of the basic ideas,

making sure you don't loose sight of the forest for the trees:

● We organize the world as types when we do object-oriented programming.  People view the

world in terms of families of related types.  We have been taught to think this way since birth.  Only

in traditional procedural programming must we try to fit a problem in the world into the framework

of the computer.

● C++ organizes a program as types.  C++ lets you organize your code into types which reflect

the types we use when organizing a problem in the real world.  The code you write becomes an

image or model of the problem you are trying to solve.

● A program has a single essential purpose.  The program has a single job it must do, no matter

how complex the program seems or how much peripheral support there is for the fundamental

purpose.  If you can discover the essential job of the program, it will be easy to read, modify, and

extend it.  This is because a good C++ program will map the types in the real world onto types in the

computer.

● Pure abstract base classes allow us to capture real-world abstractions.  Base classes generally

represent the primary concept of an object-oriented program.  Because base classes represent

concepts, which are abstractions and not specific things, it does not make sense to create objects of

an abstract base class.  To support this idea, C++ allows you to create pure virtual functions by

assigning the function body to zero in the class declaration (as we discussed previously).  Any class

which contains a pure virtual function is a pure abstract class.  No objects of a pure abstract class

can be created -- you must use classes derived from the pure abstract class.  Those classes must have

definitions for the pure virtual functions.

● Programs in C++ can be readily created to be extensible.  To extend a C++ program, you

must do two things:

1. Derive a new class from the abstract base class.  This new class embodies the extensions you

wish to make by redefining the virtual functions in the base class.

2. You must add code at the point where you create new objects so the constructor for your new

class is called.

Extensible programs are one of the major goals of object-oriented programming because they

drastically reduce the cost of creating and maintaining software.

Page 26



Workbook on C++ Programming

Solutions

Solution 1.1
Text

                  Electronic Equipment
                           |
                     --------------
                     |            |
                  Business    Entertainment
                     |            |
       -------------------  ------------------------------------
       |            |    |  |     |              |             |
Cash Registers   Copiers |  | Television    Video Games   Music Systems
                         |  |
                     ------------
                     |          |
                Telephones   Computers

Page 27



Workbook on C++ Programming

Solution 1.2
Code

#define HEADER "C++ Problem 1.2 by Rick Conn using Borland C++"

#include <stdio.h>

struct complex {
  double real_part;
  double imag_part;
public:
  void set(double rp, double ip)
  {
    real_part = rp;
    imag_part = ip;
  }

  void add_one_to (void)
  {
    real_part += 1.0;
  }

  void print (void)
  {
    printf("(%5.1lfi + %5.1lfj)\n", real_part, imag_part);
  }
};

void main(void)
{
  printf("%s\n", HEADER);

  complex value;
  value.set (20.0, -30.0);
  value.print();
  value.add_one_to();
  value.print();
}

Output

C++ Problem 1.2 by Rick Conn using Borland C++
( 20.0i + -30.0j)
( 21.0i + -30.0j)

Page 28



Workbook on C++ Programming

Solution 1.3
Code

#define HEADER "C++ Problem 1.3 by Rick Conn using Borland C++"

#include <stdio.h>

struct P {
  int value;
public:
  void set (int);
  void print (void);
  friend void printit(P);
};

void P::set (int new_value)
{
  value = new_value;
}

void P::print (void)
{
  printf("%10d\n", value);
}

void printit (P inP)
{
  printf("%10d\n", inP.value);
}

void main(void)
{
  printf("%s\n", HEADER);

  P pobject;
  pobject.set (12);
  pobject.print();
  pobject.set (14);
  printit (pobject);
}

Output

C++ Problem 1.3 by Rick Conn using Borland C++
        12
        14

Page 29



Workbook on C++ Programming

Solution 1.4
Code

#define HEADER "C++ Problem 1.4 by Rick Conn using Borland C++"

#include <stdio.h>

class counter {
  int count;
public:
  void set(int);
  void increment(void);
  void display(void);
};

void counter::set (int new_value) {
  count = new_value;
}

void counter::increment (void) {
  count++;
}

void counter::display (void) {
  printf("The count of the object at address %p is %d\n",
         this, count);
}

void main(void)
{
  printf("%s\n", HEADER);

  counter c1, c2;
  c1.set (5);
  c2.set (-12);
  c1.display();
  c2.display();
  c1.increment();
  c2.increment();
  c1.display();
  c2.display();
}

Output

C++ Problem 1.4 by Rick Conn using Borland C++
The count of the object at address FFF4 is 5
The count of the object at address FFF2 is -12
The count of the object at address FFF4 is 6
The count of the object at address FFF2 is -11

Page 30



Workbook on C++ Programming

Solution 1.5
Code

#define HEADER "C++ Problem 1.5 by Rick Conn using Borland C++"

#include <stdio.h>

void print (int value) {
  printf("The integer value is %10d\n", value);
}

void print (double value) {
  printf("The double  value is %10.2lf\n", value);
}

void main(void)
{
  printf("%s\n", HEADER);

  int i;
  double d;

  i = 4;
  d = 12.2;

  print(i);
  print(d);
}

Output

C++ Problem 1.5 by Rick Conn using Borland C++
The integer value is          4
The double  value is      12.20

Page 31



Workbook on C++ Programming

Solution 1.6
Code

#define HEADER "C++ Problem 1.6 by Rick Conn using Borland C++"

#include <stdio.h>

void print(int value = 1) {
  printf("The value is %2d\n", value);
}

void main(void)
{
  printf("%s\n", HEADER);

  print();
  print(20);
}

Output

C++ Problem 1.6 by Rick Conn using Borland C++
The value is  1
The value is 20

Page 32



Workbook on C++ Programming

Solution 2.1
Code, Part 1 of 3

#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"

int fcppv21(int x) { // function definition
  return x+1;  // something simple
}

Code, Part 2 of 3

#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
#include <stdio.h>

int fcppv21(float);  // prototype with wrong arg type

void main(void)
{
  int i;

  printf("%s\n", HEADER);
  i = fcppv21(2.0);
  printf("I = %d\n", i);
}

Code, Part 3 of 3

#define HEADER "C++ Problem 2.1 by Rick Conn using Borland C++"
#include <stdio.h>

float fcppv21(int);  // prototype with wrong return type

void main(void)
{
  float i;

  printf("%s\n", HEADER);
  i = fcppv21(2);
  printf("I = %d\n", i);
}

Make File, 1 of 2

# Makefile for Demonstrating Problem 2.1
# Part A: Attempt to create executable from CPPV2-12.CPP

all:
# Compile definition of function into object module
bcc -c cppv2-11.cpp

# Compile declaration and use of function into object
bcc -c cppv2-12.cpp

# Attempt a link (fails due to argument types)
bcc cppv2-12.obj cppv2-11.obj

Page 33



Workbook on C++ Programming

Make File, 2 of 2

# Makefile for Demonstrating Problem 2.1
# Part B: Create executable from CPPV2-13.CPP

all:
# Compile definition of function into object module
bcc -c cppv2-11.cpp

# Compile declaration and use of function into object
bcc -c cppv2-13.cpp

# Link
bcc cppv2-13.obj cppv2-11.obj

# Run program
cppv2-13

Output, 1 of 2

MAKE Version 3.6  Copyright (c) 1991 Borland International

Available memory 1195344 bytes

        bcc -c cppv2-11.cpp
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-11.cpp:

        Available memory 824833
        bcc -c cppv2-12.cpp
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-12.cpp:

        Available memory 770905
        bcc cppv2-12.obj cppv2-11.obj
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
Turbo Link  Version 5.0 Copyright (c) 1991 Borland International
Error: Undefined symbol fcppv21(float) in module cppv2-12.cpp

        Available memory 822621

** error 1 ** deleting all

Page 34



Workbook on C++ Programming

Output, 2 of 2

MAKE Version 3.6  Copyright (c) 1991 Borland International

Available memory 1195344 bytes

        bcc -c cppv2-11.cpp
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-11.cpp:

        Available memory 824833
        bcc -c cppv2-13.cpp
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-13.cpp:

        Available memory 770905
        bcc cppv2-13.obj cppv2-11.obj
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
Turbo Link  Version 5.0 Copyright (c) 1991 Borland International

        Available memory 822621
        cppv2-13

Floating point error: Domain
Abnormal program termination
** error 3 ** deleting all

Page 35



Workbook on C++ Programming

Solution 2.2
Code

#define HEADER "C++ Problem 2.2 by Rick Conn using Borland C++"

#include <stdio.h>

class simple {
public:
  simple(); // constructor
  ~simple();  // destructor
};

simple::simple() {
  printf("Constructor invoked for object at address %p\n", this);
}

simple::~simple() {
  printf("Destructor invoked for object at address %p\n", this);
}

void main(void)
{
  printf("%s\n", HEADER);

  simple a, b, c;
  simple d;
  simple e;
}

Output

C++ Problem 2.2 by Rick Conn using Borland C++
Constructor invoked for object at address FFF4
Constructor invoked for object at address FFF2
Constructor invoked for object at address FFF0
Constructor invoked for object at address FFEE
Constructor invoked for object at address FFEC
Destructor invoked for object at address FFEC
Destructor invoked for object at address FFEE
Destructor invoked for object at address FFF0
Destructor invoked for object at address FFF2
Destructor invoked for object at address FFF4

Page 36



Workbook on C++ Programming

Solution 2.3
Code

#define HEADER "C++ Problem 2.3 by Rick Conn using Borland C++"

#include <stdio.h>

const array_size = 8;

void main(void)
{
  printf("%s\n", HEADER);

  int iarray[array_size];

  printf("The size  of the array is %d\n", sizeof iarray);
  printf("The value of the const is %d\n", array_size);
}

Output

C++ Problem 2.3 by Rick Conn using Borland C++
The size  of the array is 16
The value of the const is 8

Page 37



Workbook on C++ Programming

Solution 2.4
Code

#define HEADER "C++ Problem 2.4 by Rick Conn using Borland C++"

#include <stdio.h>

inline void print_plus_5 (int value)
{
  value += 5;
  printf("The value plus 5 is %d\n", value);
}

void main(void)
{
  printf("%s\n", HEADER);

  print_plus_5(2);
  print_plus_5(-12);
  print_plus_5(10);
  print_plus_5(5);
  print_plus_5(-5);
  print_plus_5(-20);
  print_plus_5(20);
  print_plus_5(200);
  print_plus_5(2000);
  print_plus_5(20000);
}

Output

C++ Problem 2.4 by Rick Conn using Borland C++
The value plus 5 is 7
The value plus 5 is -7
The value plus 5 is 15
The value plus 5 is 10
The value plus 5 is 0
The value plus 5 is -15
The value plus 5 is 25
The value plus 5 is 205
The value plus 5 is 2005
The value plus 5 is 20005

Page 38



Workbook on C++ Programming

Solution 2.5
Code (C)

#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"

#include <stdio.h>

void main(void)
{
  printf("%s\n", HEADER);

  puts("This is a test\n");
  int i;
  i = 5;
  printf("I = %d\n", i);
}

Code (C++)

#define HEADER "C++ Problem 2.5 by Rick Conn using Borland C++"

#include <stdio.h>

void main(void)
{
  printf("%s\n", HEADER);

  puts("This is a test\n");
  int i;
  i = 5;
  printf("I = %d\n", i);
}

Output

> bcc cppv2-5.c
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-5.c:
Error cppv2-5.c 10: Declaration is not allowed here in function main
*** 1 errors in Compile ***

        Available memory 905112
> bcc cppv2-5.cpp
Borland C++  Version 3.00 Copyright (c) 1991 Borland International
cppv2-5.cpp:
Turbo Link  Version 5.0 Copyright (c) 1991 Borland International

        Available memory 894596
> cppv2-5
C++ Problem 2.5 by Rick Conn using Borland C++
This is a test

I = 5

Page 39



Workbook on C++ Programming

Solution 2.6
Code

#define HEADER "C++ Problem 2.6 by Rick Conn using Borland C++"

#include <stdio.h>

struct book {
  char title[40];
  char author[20];
};

void print_book (book &name)
{
  printf(" Title: %s\n", name.title);
  printf("Author: %s\n", name.author);
}

void main(void)
{
  printf("%s\n", HEADER);

  book textbook = { "Turbo C++ DiskTutor",
                    "Voss & Chui" };
  book refbook = { "The Annotated C++ Reference Manual",
                   "Ellis & Stroustrup" };
  print_book (textbook);
  print_book (refbook);
}

Output

C++ Problem 2.6 by Rick Conn using Borland C++
 Title: Turbo C++ DiskTutor
Author: Voss & Chui
 Title: The Annotated C++ Reference Manual
Author: Ellis & Stroustrup

Page 40



Workbook on C++ Programming

Solution 2.7
Code

#define HEADER "C++ Problem 2.7 by Rick Conn using Borland C++"

#include <stdio.h>

class person {
  char *name;
public:
  person (char *my_name);  // create a person with
                           // a given name
  void print_me(void);  // print the name of the person
                        // and his address using this
};

person::person (char *my_name)
{
  name = my_name;
}

void person::print_me(void)
{
  printf("The name is %s\n", name);
  printf("The address is %p\n", this);
}

void main(void)
{
  printf("%s\n", HEADER);

  person ck ("Clark Kent");
  person s ("Superman");
  person bw ("Bruce Wayne");
  person b ("Batman");
  person bs ("Bjarne Stroustrop");

  ck.print_me();
  s.print_me();
  bw.print_me();
  b.print_me();
  bs.print_me();
}

Output

C++ Problem 2.7 by Rick Conn using Borland C++
The name is Clark Kent
The address is FFF4
The name is Superman
The address is FFF2
The name is Bruce Wayne
The address is FFF0
The name is Batman
The address is FFEE
The name is Bjarne Stroustrop
The address is FFEC

Page 41



Workbook on C++ Programming

Solution 3.1
Code

#define HEADER "C++ Problem 3.1 by Rick Conn using Borland C++"

#include <stdio.h>

class counter {
  static int object_count;
public:
  counter();
  static int get_count(void);
};

int counter::object_count = 0;  // init count

counter::counter() { counter::object_count++; }

int counter::get_count(void)
{
  return counter::object_count;
}

void main(void)
{
  printf("%s\n", HEADER);

  counter c1;
  printf("The count is %d\n",
    c1.get_count());

  counter c2;
  printf("The count is %d\n",
    counter::get_count());

  counter c3;
  printf("The count is %d\n",
    c3.get_count());

  counter c4;
  printf("The count is %d\n",
    c4.get_count());

  counter c5;
  printf("The count is %d\n",
    c5.get_count());
}

Output

C++ Problem 3.1 by Rick Conn using Borland C++
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5

Page 42



Workbook on C++ Programming

Solution 3.2
Code

#define HEADER "C++ Problem 3.2 by Rick Conn using Borland C++"

#include <stdio.h>
#include <string.h>  // for strcpy()

const max_string_length = 100;

class string {
  char data[max_string_length];
  static int number_of_strings;
public:
  string (char *);
  static int count (void);
  void print (void);
};

int string::number_of_strings = 0;

string::string(char *new_string) {
  strcpy(data, new_string);
  string::number_of_strings++;
}

int string::count(void) {
  return number_of_strings;
}

void string::print(void) {
  printf("String = \"%s\"\n", data);
}

void main(void)
{
  printf("%s\n", HEADER);

  string s1("This is a test");
  string s2("This is only a test");
  string s3("This is fun");
  printf("The count is %d\n", string::count());

  string s4("Another string");
  string s5("Yet another string");
  printf("The count is %d\n", string::count());

  s1.print();
  s2.print();
  s3.print();
  s4.print();
  s5.print();
}

Page 43



Workbook on C++ Programming

Output

C++ Problem 3.2 by Rick Conn using Borland C++
The count is 3
The count is 5
String = "This is a test"
String = "This is only a test"
String = "This is fun"
String = "Another string"
String = "Yet another string"

Page 44



Workbook on C++ Programming

Solution 3.3
Code

#define HEADER "C++ Problem 3.3 by Rick Conn using Borland C++"

#include <stdio.h>
#include <string.h>  // for strcpy()
#include <mem.h>     // for memcpy()

class note {
  char text[40];
public:
  note (char *cp = "");
  void print (void);
};

class note_book {
  note *narray[10];
  int number_of_notes;
public:
  note_book();
  void add (note *);
  void print(void);
};

note::note (char *value) { strcpy(text, value); }

void note::print(void) { printf("Note: %s\n", text); }

note_book::note_book() { number_of_notes = 0; }

void note_book::add (note *newnote) {
  narray[number_of_notes] = newnote;
  number_of_notes++;
}

void note_book::print(void) {
  int i;

  for (i=0; i<number_of_notes; i++) {
    printf("%2d: ", i);
    narray[i] -> print();
  }
}

void main(void)
{
  printf("%s\n", HEADER);

  note_book nb;

  note n1("This is a test");     note n2("This is only a test");
  note n3("How far will I go?"); note n4("Perhaps just so far");
  note n5("This is fun");        note n6("This is boring");
  note n7("This works");

  nb.add (&n1);  nb.add (&n2);  nb.add (&n3);  nb.add (&n4);
  nb.add (&n5);  nb.add (&n6);  nb.add (&n7);

  nb.print();
}

Page 45



Workbook on C++ Programming

Output

C++ Problem 3.3 by Rick Conn using Borland C++
 0: Note: This is a test
 1: Note: This is only a test
 2: Note: How far will I go?
 3: Note: Perhaps just so far
 4: Note: This is fun
 5: Note: This is boring
 6: Note: This works

Page 46



Workbook on C++ Programming

Solution 4.1
Header File

// CPPV4-1.H by Rick Conn Using Borland C++
#ifndef COMPLEX_H_
#define COMPLEX_H_

// COMPLEX Class
class complex {
  float real_part;
  float imag_part;
  char *name;
public:
  complex (char *, float rp=0.0, float ip=0.0);
  void set (float rp=0.0, float ip=0.0);
  complex & operator= (complex &);
  complex operator+ (complex &right);
  complex operator- (complex &right);
  complex operator* (complex &right);
  void print(void);
};

complex::complex (char *n, float rp, float ip) {
  name = n;  real_part = rp;  imag_part = ip;
}

void complex::set (float rp, float ip) {
  real_part = rp;  imag_part = ip;
}

complex & complex::operator= (complex &arg) {
  real_part = arg.real_part;
  imag_part = arg.imag_part;
  return *this;
}

complex complex::operator+ (complex &right) {
  complex result ("Temp");
  result.real_part = real_part + right.real_part;
  result.imag_part = imag_part + right.imag_part;
  return result;
}

complex complex::operator- (complex &right) {
  complex result ("Temp");
  result.real_part = real_part - right.real_part;
  result.imag_part = imag_part - right.imag_part;
  return result;
}

complex complex::operator* (complex &right) {
  complex result ("Temp");
  result.real_part = real_part * right.real_part -
                     imag_part * right.imag_part;
  result.imag_part = imag_part * right.real_part +
                     real_part * right.imag_part;
  return result;
}

void complex::print(void) {
  printf("  %s: %10.5f + %10.5fi\n",
          name, real_part, imag_part);
}

Page 47



Workbook on C++ Programming

#endif // COMPLEX_H_

Code

#define HEADER "C++ Problem 4.1 by Rick Conn using Borland C++"

#include <stdio.h>
#include "cppv4-1.h"

void main(void)
{
  printf("%s\n", HEADER);

  complex a("A"), b("B", 2.0, 3.0), c("C");

  a = b;
  printf("A = B\n");
  a.print(); b.print(); c.print();
  a.set(5.0, -4.0);
  printf("A = 5 - 4i\n");
  a.print(); b.print(); c.print();
  c = a + b;
  printf("C = A + B\n");
  a.print(); b.print(); c.print();
  c = a - b;
  printf("C = A - B\n");
  a.print(); b.print(); c.print();
  c = a * b;
  printf("C = A * B\n");
  a.print(); b.print(); c.print();
}

Output

C++ Problem 4.1 by Rick Conn using Borland C++
A = B
  A:    2.00000 +    3.00000i
  B:    2.00000 +    3.00000i
  C:    0.00000 +    0.00000i
A = 5 - 4i
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    0.00000 +    0.00000i
C = A + B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    7.00000 +   -1.00000i
C = A - B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    3.00000 +   -7.00000i
C = A * B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:   22.00000 +    7.00000i

Page 48



Workbook on C++ Programming

Solution 4.2
Code

#define HEADER "C++ Problem 4.2 by Rick Conn using Borland C++"

#include <stdio.h>

class number {
protected:
  int value;
public:
  number (int new_value = 0);
  void set (int new_value = 0);
};

class pnumber : public number {
public:
  // Note: I had to add a constructor for pnumber
  // because number's constructor required an argument
  pnumber (int new_value = 0);
  void print(void);
};

number::number(int new_value) {
  value = new_value;
}

void number::set (int new_value) {
  value = new_value;
}

pnumber::pnumber(int new_value) {
  value = new_value;
}

void pnumber::print (void) {
  printf("The value is %d\n", value);
}

void main(void)
{
  printf("%s\n", HEADER);

  pnumber a (12), b(20), c(0);
  a.print(); b.print(); c.print();

  a.set(1); b.set(2); c.set(3);
  a.print(); b.print(); c.print();
}

Output

C++ Problem 4.2 by Rick Conn using Borland C++
The value is 12
The value is 20
The value is 0
The value is 1
The value is 2
The value is 3

Page 49



Workbook on C++ Programming

Solution 4.3
Code

#define HEADER "C++ Problem 4.3 by Rick Conn using Borland C++"

#include <stdio.h>
#include <time.h>

class time_stamp {
  time_t stamp;
public:
  time_stamp();
  void showtime(void);
};

time_stamp::time_stamp() {
  time (&stamp);
}

void time_stamp::showtime(void) {
  printf("Time Stamp: %s", ctime (&stamp));
}

class message : private time_stamp {
  char *msg;
public:
  message (char *);
  void print(void);
};

message::message (char *m) {
  msg = m;
}

void message::print(void) {
  printf("Message \"%s\"  ", msg);
  showtime();
}

class message2 : public time_stamp {
  char *msg;
public:
  message2 (char *);
  void print(void);
};

message2::message2 (char *m) {
  msg = m;
}

void message2::print(void) {
  printf("Message2 \"%s\"  ", msg);
  showtime();
}

void main(void)
{
  printf("%s\n", HEADER);

  message  m1("This is a test");
  message2 m2("Another test");

  // All member functions of message

Page 50



Workbook on C++ Programming

  m1.print();

  // All member functions of message2
  m2.print();
  m2.showtime();
}

Output

C++ Problem 4.3 by Rick Conn using Borland C++
Message "This is a test"  Time Stamp: Mon Feb 10 05:35:39 1992
Message2 "Another test"  Time Stamp: Mon Feb 10 05:35:39 1992
Time Stamp: Mon Feb 10 05:35:39 1992

Page 51



Workbook on C++ Programming

Solution 4.4
Code

#define HEADER "C++ Problem 4.4 by Rick Conn using Borland C++"

#include <stdio.h>
#include <time.h>

class time_stamp {
  time_t stamp;
public:
  time_stamp();
  ~time_stamp();
  void showtime(void);
};

time_stamp::time_stamp() {
  time (&stamp);
  printf("  Time_Stamp constructor called\n");
}

time_stamp::~time_stamp() {
  printf("  Time_Stamp destructor called\n");
}
void time_stamp::showtime(void) {
  printf("Time Stamp: %s", ctime (&stamp));
}

class message : private time_stamp {
  char *msg;
public:
  message (char *);
  ~message();
  void print(void);
};

message::message (char *m) {
  msg = m;
  printf("  Message constructor called\n");
}
message::~message() {
  printf("  Message destructor called\n");
}
void message::print(void) {
  printf("Message \"%s\"  ", msg);
  showtime();
}

class message2 : public time_stamp {
protected:
  char *msg;
public:
  message2 (char *);
  ~message2();
  void print(void);
};

message2::message2 (char *m) {
  msg = m;
  printf("  Message2 constructor called\n");
}
message2::~message2() {
  printf("  Message2 destructor called\n");

Page 52



Workbook on C++ Programming

}
void message2::print(void) {
  printf("Message2 \"%s\"  ", msg);
  showtime();
}

class priority_message : public message2 {
  char *urgency;
public:
  priority_message (char *m, char *u);
  ~priority_message();
  void print(void);  // includes urgency info
};

priority_message::priority_message (char *m, char *u) :
  message2(m) {
    urgency = u;
    printf("  Priority_Message constructor called\n");
}
priority_message::~priority_message() {
  printf("  Priority_Message destructor called\n");
}
void priority_message::print(void) {
  printf("Urgency %s: %s  -- ", urgency, msg);
  showtime();
}

void main(void)
{
  printf("%s\n", HEADER);

  priority_message pm1("This is a test", "Routine");
  priority_message pm2("Em Situation", "Emergency");

  pm1.print();
  pm2.print();
}

Output

C++ Problem 4.4 by Rick Conn using Borland C++
  Time_Stamp constructor called
  Message2 constructor called
  Priority_Message constructor called
  Time_Stamp constructor called
  Message2 constructor called
  Priority_Message constructor called
Urgency Routine: This is a test  -- Time Stamp: Mon Feb 10 05:50:10 1992
Urgency Emergency: Em Situation  -- Time Stamp: Mon Feb 10 05:50:10 1992
  Priority_Message destructor called
  Message2 destructor called
  Time_Stamp destructor called
  Priority_Message destructor called
  Message2 destructor called
  Time_Stamp destructor called

Page 53



Workbook on C++ Programming

Solution 4.5
Code

#define HEADER "C++ Problem 4.5 by Rick Conn using Borland C++"

#include <stdio.h>

class base {
protected:
  char *msg;
public:
  base(char *);
  ~base();
  void print(void);
};

class derived1 : base {
public:
  derived1(char *);
  ~derived1();
};

class derived2 : derived1 {
public:
  derived2(char *);
  ~derived2();
};

base::base (char *m) {
  msg = m;
  printf("Base constructor called with message %s\n", msg);
}

base::~base() {
  printf("  Base destructor called with message %s\n", msg);
}

void base::print(void) {
  printf(" with message %s\n", msg);
}

derived1::derived1 (char *m) : base(m) {
  printf("  Derived1 constructor called");
  print();
}

derived1::~derived1() {
  printf("  Derived1 destructor called");
  print();
}

derived2::derived2 (char *m) : derived1(m) {
  printf("  Derived2 constructor called\n");
}

derived2::~derived2() {
  printf("Derived2 destructor called\n");
}

void main(void)
{
  printf("%s\n", HEADER);

Page 54



Workbook on C++ Programming

  derived2 x ("X");
  {
    derived2 y ("Y");
  }
  derived2 z ("Z");
}

Output

C++ Problem 4.5 by Rick Conn using Borland C++
Base constructor called with message X
  Derived1 constructor called with message X
  Derived2 constructor called
Base constructor called with message Y
  Derived1 constructor called with message Y
  Derived2 constructor called
Derived2 destructor called
  Derived1 destructor called with message Y
  Base destructor called with message Y
Base constructor called with message Z
  Derived1 constructor called with message Z
  Derived2 constructor called
Derived2 destructor called
  Derived1 destructor called with message Z
  Base destructor called with message Z
Derived2 destructor called
  Derived1 destructor called with message X
  Base destructor called with message X

Page 55



Workbook on C++ Programming

Solution 5.1
Code

#define HEADER "C++ Problem 5.1 by Rick Conn using Borland C++"

#include <stdio.h>

class wheel {
  int wheel_diameter;
public:
  wheel (int diameter);
  void print(void);
};

class vehicle {
  int horse_power;
  wheel lfront, rfront, lrear, rrear;
public:
  vehicle (int hp,
           int diameter_of_each_wheel);
  void print(void);
};

wheel::wheel (int diameter) { wheel_diameter = diameter; }

void wheel::print(void) {
  printf("Wheel diameter = %d\n", wheel_diameter);
}

vehicle::vehicle (int hp,
                  int diameter_of_each_wheel) :
  horse_power(hp),
  lfront(diameter_of_each_wheel),
  rfront(diameter_of_each_wheel),
  lrear(diameter_of_each_wheel),
  rrear(diameter_of_each_wheel)
{
  // nothing else to be done
}

void vehicle::print(void) {
  printf("Horse Power = %d\n", horse_power);
  lfront.print();
  rfront.print();
  lrear.print();
  rrear.print();
}

void main(void)
{
  printf("%s\n", HEADER);

  vehicle v (190, 32);
  v.print();
}

Page 56



Workbook on C++ Programming

Output

C++ Problem 5.1 by Rick Conn using Borland C++
Horse Power = 190
Wheel diameter = 32
Wheel diameter = 32
Wheel diameter = 32
Wheel diameter = 32

Page 57



Workbook on C++ Programming

Solution 5.2
Code

#define HEADER "C++ Problem 5.2 by Rick Conn using Borland C++"

#include <stdio.h>

enum pet_kind {doggy, kitty, neither};

class pet {
  pet_kind pk;
public:
  pet(pet_kind);
  void speak(void);
  pet_kind type(void);
};

class dog : public pet {
public:
  dog();
  void speak(void);
};

class cat : public pet {
public:
  cat();
  void speak(void);
};

pet::pet(pet_kind kind) {
  pk = kind;
}

void pet::speak(void) {
  printf("silence\n");
}

pet_kind pet::type(void) {
  return pk;
}

dog::dog() : pet(doggy) {
  // nothing to do
}

void dog::speak(void) {
  printf("woof\n");
}

cat::cat() : pet(kitty) {
  // nothing to do
}

void cat::speak(void) {
  printf("meow\n");
}

void talk (pet *p) {
  switch (p->type()) {
    case doggy : ((dog *)p) -> speak();
                 break;
    case kitty : ((cat *)p) -> speak();
                 break;

Page 58



Workbook on C++ Programming

    default    : p -> speak();
                 break;
  }
}

void main(void)
{
  printf("%s\n", HEADER);

  dog scotty;
  cat fluffy;
  pet funny (neither);

  talk(&scotty);
  talk(&fluffy);
  talk(&funny);
}

Output

C++ Problem 5.2 by Rick Conn using Borland C++
woof
meow
silence

Page 59



Workbook on C++ Programming

Solution 5.3
Code

#define HEADER "C++ Problem 5.3 by Rick Conn using Borland C++"

#include <stdio.h>

enum pet_kind {doggy, kitty, neither};

class pet {
  pet_kind pk;
public:
  pet(pet_kind);
  virtual void speak(void);
  pet_kind type(void);
};

class dog : public pet {
public:
  dog();
  void speak(void);
};

class cat : public pet {
public:
  cat();
  void speak(void);
};

pet::pet(pet_kind kind) {
  pk = kind;
}

void pet::speak(void) { }

pet_kind pet::type(void) {
  return pk;
}

dog::dog() : pet(doggy) {
  // nothing to do
}

void dog::speak(void) {
  printf("woof\n");
}

cat::cat() : pet(kitty) {
  // nothing to do
}

void cat::speak(void) {
  printf("meow\n");
}

void talk (pet *p) {
  p -> speak();
}

void main(void)
{
  printf("%s\n", HEADER);

Page 60



Workbook on C++ Programming

  dog scotty;
  cat fluffy;

  talk(&scotty);
  talk(&fluffy);
}

Output

C++ Problem 5.3 by Rick Conn using Borland C++
woof
meow

Page 61



Workbook on C++ Programming

Solution 5.4
Code

#define HEADER "C++ Problem 5.4 by Rick Conn using Borland C++"

#include <stdio.h>

// COMPLEX Class
class complex {
  float real_part;
  float imag_part;
  char *name;
public:
  complex (char *, float rp=0.0, float ip=0.0);
  void set (float rp=0.0, float ip=0.0);
  complex & operator= (complex &);
  complex operator+ (complex &right);
  complex operator- (complex &right);
  complex operator* (complex &right);
  void print(void);
};

complex::complex (char *n, float rp, float ip) {
  name = n;  real_part = rp;  imag_part = ip;
}

void complex::set (float rp, float ip) {
  real_part = rp;  imag_part = ip;
}

complex & complex::operator= (complex &arg) {
  real_part = arg.real_part;
  imag_part = arg.imag_part;
  return *this;
}

complex complex::operator+ (complex &right) {
  complex result ("Temp");
  result.real_part = real_part + right.real_part;
  result.imag_part = imag_part + right.imag_part;
  return result;
}

complex complex::operator- (complex &right) {
  complex result ("Temp");
  result.real_part = real_part - right.real_part;
  result.imag_part = imag_part - right.imag_part;
  return result;
}

complex complex::operator* (complex &right) {
  complex result ("Temp");
  result.real_part = real_part * right.real_part -
                     imag_part * right.imag_part;
  result.imag_part = imag_part * right.real_part +
                     real_part * right.imag_part;
  return result;
}

void complex::print(void) {
  printf("  %s: %10.5f + %10.5fi\n",
          name, real_part, imag_part);
}

Page 62



Workbook on C++ Programming

void main(void)
{
  printf("%s\n", HEADER);

  complex a("A"), b("B", 2.0, 3.0), c("C");

  a = b;
  printf("A = B\n");
  a.print(); b.print(); c.print();
  a.set(5.0, -4.0);
  printf("A = 5 - 4i\n");
  a.print(); b.print(); c.print();
  c = a + b;
  printf("C = A + B\n");
  a.print(); b.print(); c.print();
  c = a - b;
  printf("C = A - B\n");
  a.print(); b.print(); c.print();
  c = a * b;
  printf("C = A * B\n");
  a.print(); b.print(); c.print();
}

Output

C++ Problem 5.4 by Rick Conn using Borland C++
A = B
  A:    2.00000 +    3.00000i
  B:    2.00000 +    3.00000i
  C:    0.00000 +    0.00000i
A = 5 - 4i
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    0.00000 +    0.00000i
C = A + B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    7.00000 +   -1.00000i
C = A - B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:    3.00000 +   -7.00000i
C = A * B
  A:    5.00000 +   -4.00000i
  B:    2.00000 +    3.00000i
  C:   22.00000 +    7.00000i

Page 63


